Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons.

نویسندگان

  • I Tint
  • T Slaughter
  • I Fischer
  • M M Black
چکیده

Tau is a developmentally regulated microtubule (MT)-associated protein in neurons that has been implicated in neuronal morphogenesis. On the basis of test tube studies, tau has been proposed to function in axon growth by stabilizing MTs and thereby promoting MT assembly. We have tested this hypothesis by examining the effects of acute inactivation of tau on axonal MTs. Tau was inactivated by microinjecting purified antibodies against recombinant tau into neurons before they extended axons. The injected antibodies quantitatively precipitated tau into aggregates in the soma. With these conditions the neurons elaborate normal-appearing axons, and MTs extend throughout the axons and into the growth cones, but the axons and their MTs are depleted of tau. The immunodepletion of tau had no detectable effect on several parameters of the dynamics of axonal MTs. Depletion of tau also was not accompanied by a reorganization of other major MT-associated proteins or actin filaments in these neurons. Thus, neurons effectively depleted of tau can extend axons that resemble those of control cells, and the axons contain normal-appearing MT arrays with normal dynamic behavior. These observations are exactly the opposite of those expected on the basis of the hypothesis that the stability of axonal MTs is a direct function of their content of tau, indicating that tau in growing axons of cultured sympathetic neurons is not specialized to promote microtubule assembly and stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tau is enriched on dynamic microtubules in the distal region of growing axons.

It is widely held that tau determines the stability of microtubules in growing axons, although direct evidence supporting this hypothesis is lacking. Previous studies have shown that the microtubule polymer in the distal axon and growth cone is the most dynamic of growing axons; it turns over more rapidly and is more sensitive to microtubule depolymerizing drugs than the polymer situated proxim...

متن کامل

P 97: Neurodegeneration Induced by Tau protein

Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...

متن کامل

Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons.

Paired helical filaments (PHFs) in the neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) brains are composed of highly phosphorylated isoforms of tau (PHFtau) that fail to bind microtubules (MTs), and the levels of MT-binding competent tau are decreased in AD brains with abundant PHFtau. Because this loss of MT binding could compromise the viability of tangle-bearing AD neurons by dest...

متن کامل

Tau confers drug stability but not cold stability to microtubules in living cells.

We previously defined two classes of microtubule polymer in the axons of cultured sympathetic neurons that differ in their sensitivity to nocodazole by roughly 35-fold (Baas and Black (1990) J. Cell Biol. 111, 495-509). Here we demonstrate that virtually all of the microtubule polymer in these axons, including the drug-labile polymer, is stable to cold. What factors account for the unique stabi...

متن کامل

Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases.

It is commonly stated that microtubules gradually disintegrate as tau becomes dissociated from them in tauopathies such as Alzheimer's disease. However, there has been no compelling evidence to date that such disintegration is due to depolymerization of microtubules from their ends. In recent studies, we have shown that neurons contain sufficient levels of the microtubule-severing protein terme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 21  شماره 

صفحات  -

تاریخ انتشار 1998